ABSTRACT
Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.
PMID:37895912 | PMC:PMC10610064 | DOI:10.3390/ph16101441
11:09
PubMed articles on: Cardio-Oncology
Multimodality Cardiovascular Imaging of Cardiotoxicity Due to Cancer Therapy
Life (Basel). 2023 Oct 23;13(10):2103. doi: 10.3390/life13102103.
ABSTRACT
Cancer therapies have revolutionized patient survival rates, yet they come with the risk of cardiotoxicity, necessitating effective monitoring and management. The existing guidelines offer a limited empirical basis for practical approaches in various clinical scenarios. This article explores the intricate relationship between cancer therapy and the cardiovascular system, highlighting the role of advanced multimodality imaging in monitoring patients before, during, and after cancer treatment. This review outlines the cardiovascular effects of different cancer therapy classes, offering a comprehensive understanding of their dose- and time-dependent impacts. This paper delves into diverse imaging modalities such as echocardiography, cardiac magnetic resonance imaging, cardiac computed tomography, and nuclear imaging, detailing their strengths and limitations in various conditions due to cancer treatment, such as cardiac dysfunction, myocarditis, coronary artery disease, Takotsubo cardiomyopathy, pulmonary hypertension, arterial hypertension, valvular heart diseases, and heart failure with preserved ejection fraction. Moreover, it underscores the significance of long-term follow-up for cancer survivors and discusses future directions.
PMID:37895484 | PMC:PMC10608651 | DOI:10.3390/life13102103
11:09
PubMed articles on: Cardio-Oncology
H-Dot Mediated Nanotherapeutics Mitigate Systemic Toxicity of Platinum-Based Anticancer Drugs
Int J Mol Sci. 2023 Oct 23;24(20):15466. doi: 10.3390/ijms242015466.
ABSTRACT
Platinum-based anticancer agents have revolutionized oncological treatments globally. However, their therapeutic efficacy is often accompanied by systemic toxicity. Carboplatin, recognized for its relatively lower toxicity profile than cisplatin, still presents off-target toxicities, including dose-dependent cardiotoxicity, neurotoxicity, and myelosuppression. In this study, we demonstrate a delivery strategy of carboplatin to mitigate its off-target toxicity by leveraging the potential of zwitterionic nanocarrier, H-dot. The designed carboplatin/H-dot complex (Car/H-dot) exhibits rapid drug release kinetics and notable accumulation in proximity to tumor sites, indicative of amplified tumor targeting precision. Intriguingly, the Car/H-dot shows remarkable efficacy in eliminating tumors across insulinoma animal models. Encouragingly, concerns linked to carboplatin-induced cardiotoxicity are effectively alleviated by adopting the Car/H-dot nanotherapeutic approach. This pioneering investigation not only underscores the viability of H-dot as an organic nanocarrier for platinum drugs but also emphasizes its pivotal role in ameliorating associated toxicities. Thus, this study heralds a promising advancement in refining the therapeutic landscape of platinum-based chemotherapy.
PMID:37895146 | PMC:PMC10607179 | DOI:10.3390/ijms242015466
11:09
PubMed articles on: Cardio-Oncology
Prospective, Multicenter Phase II Trial of Non-Pegylated Liposomal Doxorubicin Combined with Ifosfamide in First-Line Treatment of Advanced/Metastatic Soft Tissue Sarcomas
Cancers (Basel). 2023 Oct 18;15(20):5036. doi: 10.3390/cancers15205036.
ABSTRACT
Doxorubicin is a widely used anticancer agent as a first-line treatment for various tumor types, including sarcomas. Its use is hampered by adverse events, among which is the risk of dose dependence. The potential cardiotoxicity, which increases with higher doses, poses a significant challenge to its safe and effective application. To try to overcome these undesired effects, encapsulation of doxorubicin in liposomes has been proposed. Caelyx and Myocet are different formulations of pegylated (PLD) and non-pegylated liposomal doxorubicin (NPLD), respectively. Both PLD and NPLD have shown similar activity compared with free drugs but with reduced cardiotoxicity. While the hand-foot syndrome exhibits a high occurrence among patients treated with PLD, its frequency is notably reduced in those receiving NPLD. In this prospective, multicenter, one-stage, single-arm phase II trial, we assessed the combination of NPLD and ifosfamide as first-line treatment for advanced/metastatic soft tissue sarcoma (STS). Patients received six cycles of NPLD (50 mg/m2) on day 1 along with ifosfamide (3000 mg/m2 on days 1, 2, and 3 with equidose MESNA) administered every 3 weeks. The overall response rate, yielding 40% (95% CI: 0.29-0.51), resulted in statistical significance; the disease control rate stood at 81% (95% CI: 0.73-0.90), while only 16% (95% CI: 0.08-0.24) of patients experienced a progressive disease. These findings indicate that the combination of NPLD and ifosfamide yields a statistically significant response rate in advanced/metastatic STS with limited toxicity.
PMID:37894403 | PMC:PMC10605752 | DOI:10.3390/cancers15205036
11:09
PubMed articles on: Cardio-Oncology
The Protective Effect of Citronellol against Doxorubicin-Induced Cardiotoxicity in Rats
Biomedicines. 2023 Oct 18;11(10):2820. doi: 10.3390/biomedicines11102820.
No comments:
Post a Comment
اكتب تعليق حول الموضوع