ABSTRACT
Methylimidazolium ionic liquids (MILs) are solvent chemicals used in industry. Recent work suggests that MILs are beginning to contaminate the environment and lead to exposure in the general population. In this study, the potential for MILs to cause cardiac toxicity has been examined. The effects of 5 chloride MIL salts possessing increasing alkyl chain lengths (2 C, EMI; 4 C, BMI; 6 C; HMI, 8 C, M8OI; 10 C, DMI) on rat neonatal cardiomyocyte beat rate, beat amplitude and cell survival were initially examined. Increasing alkyl chain length resulted in increasing adverse effects, with effects seen at 10-5 M at all endpoints with M8OI and DMI, the lowest concentration tested. A limited sub-acute toxicity study in rats identified potential cardiotoxic effects with longer chain MILs (HMI, M8OI and DMI) based on clinical chemistry. A 5 month oral/drinking water study with these MILs confirmed cardiotoxicity based on histopathology and clinical chemistry endpoints. Since previous studies in mice did not identify the heart as a target organ, the likely cause of the species difference was investigated. qRT-PCR and Western blotting identified a marked higher expression of p-glycoprotein-3 (also known as ABCB4 or MDR2) and the breast cancer related protein transporter BCRP (also known as ABCG2) in mouse, compared to rat heart. Addition of the BCRP inhibitor Ko143 - but not the p-glycoproteins inhibitor cyclosporin A - increased mouse cardiomyocyte HL-1 cell sensitivity to longer chain MILs to a limited extent. MILs therefore have a potential for cardiotoxicity in rats. Mice may be less sensitive to cardiotoxicity from MILs due in part, to increased excretion via higher levels of cardiac BCRP expression and/or function. MILs alone, therefore may represent a hazard in man in the future, particularly if use levels increase. The impact that MILs exposure has on sensitivity to cardiotoxic drugs, heart disease and other chronic diseases is unknown.
PMID:37272551 | DOI:10.1016/j.ecoenv.2022.114439
13:28
PubMed articles on: Cardio-Oncology
Finally Getting to the Heart of the Matter: Imaging Multiorgan Treatment Response in AL Amyloidosis
JACC Cardiovasc Imaging. 2023 May 5:S1936-878X(23)00190-0. doi: 10.1016/j.jcmg.2023.03.022. Online ahead of print.
NO ABSTRACT
PMID:37269271 | DOI:10.1016/j.jcmg.2023.03.022
13:28
PubMed articles on: Cardio-Oncology
Long COVID syndrome after SARS-CoV-2 survival in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension
Pulm Circ. 2023 May 31;13(2):e12244. doi: 10.1002/pul2.12244. eCollection 2023 Apr.
ABSTRACT
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) patients have a more severe COVID-19 course than the general population. Many patients report different persistent symptoms after SARS-CoV-2 infection. The aim of our study is to analyze the prevalence of long COVID-19 symptoms and assess if COVID-19 affects pulmonary hypertension (PH) prognosis. PAH/CTEPH patients who survived COVID-19 for at least 3 months before visiting the PH centers were included in the study. The patients were assessed for symptoms in acute phase of SARS-CoV-2 infection and persisting in follow-up visit, WHO functional class, 6-min walk distance, NT-proBNP concentration. The COMPERA 2.0 model was used to calculate 1-year risk of death due to PH at baseline and at follow-up. Sixty-nine patients-54 (77.3%) with PAH and 15 (21.7%) with CTEPH, 68% women, with a median age of 47.5 years (IQR 37-68)-were enrolled in the study. About 17.1% of patients were hospitalized due to COVID-19 but none in an ICU. At follow-up (median: 155 days after onset of SARS-CoV-2 symptoms), 62% of patients reported at least 1 COVID-19-related symptom and 20% at least 5 symptoms. The most frequently reported symptoms were: fatigue (30%), joint pain (23%), muscle pain (17%), nasal congestion (17%), anosmia (13%), insomnia (13%), and dyspnea (12%). Seventy-two percent of PH patients had a low or intermediate-low risk of 1-year death due to PH at baseline, and 68% after COVID-19 at follow-up. Over 60% of PAH/CTEPH patients who survived COVID-19 suffered from long COVID-19 syndrome, but the calculated 1-year risk of death due to PH did not change significantly after surviving mild or moderate COVID-19.
PMID:37266140 | PMC:PMC10232226 | DOI:10.1002/pul2.12244
13:28
PubMed articles on: Cardio-Oncology
An ERK5-NRF2 Axis Mediates Senescence-Associated Stemness and Atherosclerosis
Circ Res. 2023 Jun 2. doi: 10.1161/CIRCRESAHA.122.322017. Online ahead of print.
ABSTRACT
BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis.
METHODS: A ERK5 S496A (dephosphorylation mimic) KI (knock in) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and WT (wild type) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis.
RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors.
CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.
PMID:37264926 | DOI:10.1161/CIRCRESAHA.122.322017
13:28
PubMed articles on: Cardio-Oncology
Vascular Inflammation, Cancer, and Cardiovascular Diseases
Curr Oncol Rep. 2023 Jun 1. doi: 10.1007/s11912-023-01426-0. Online ahead of print.
No comments:
Post a Comment
اكتب تعليق حول الموضوع