ABSTRACT
Doxorubicin, a widely used chemotherapeutic drug in clinical oncology, causes a series of cardiac side effects referred to as doxorubicin-induced cardiotoxicity. Hyperhomocysteinaemia is an independent risk factor for multiple cardiovascular diseases. However, whether hyperhomocysteinaemia contributes to doxorubicin-induced cardiotoxicity is currently unknown. In this study, we explored the pathogenic effects of hyperhomocysteinaemia induced by dietary methionine supplementation (2% wt/wt in rodent chow) in a mouse model of doxorubicin-induced cardiotoxicity. Our data showed that methionine supplementation doubled serum homocysteine levels, inducing mild hyperhomocysteinaemia. Doxorubicin at a cumulative dosage of 25 mg/kg body weight led to significant weight loss and severe cardiac dysfunction, which were further exacerbated by methionine-induced mild hyperhomocysteinaemia. Doxorubicin-induced cardiac atrophy, cytoplasmic vacuolisation, myofibrillar disarray and loss, as well as cardiac fibrosis, were also exacerbated by methionine-induced mild hyperhomocysteinaemia. Additional folic acid supplementation (0.006% wt/wt) prevented methionine-induced hyperhomocysteinaemia and inhibited hyperhomocysteinaemia-aggravated cardiac dysfunction and cardiomyopathy. In particular, hyperhomocysteinaemia increased both serum and cardiac oxidative stress, which could all be inhibited by folic acid supplementation. Therefore, we demonstrated for the first time that hyperhomocysteinaemia could exacerbate doxorubicin-induced cardiotoxicity in mice, and the pathogenic effects of hyperhomocysteinaemia might at least partially correlate with increased oxidative stress and could be prevented by folic acid supplementation. Our study provides preliminary experimental evidence for the assessment of hyperhomocysteinaemia as a potential risk factor for chemotherapy-induced cardiotoxicity in cancer patients.
PMID:37765020 | PMC:PMC10534320 | DOI:10.3390/ph16091212
07:06
PubMed articles on: Cardio-Oncology
Sheng-Mai-Yin inhibits doxorubicin-induced ferroptosis and cardiotoxicity through regulation of Hmox1
Aging (Albany NY). 2023 Sep 28;15. doi: 10.18632/aging.205062. Online ahead of print.
ABSTRACT
Doxorubicin (DOX) is a potent chemotherapeutic drug used for treating various cancers. However, its clinical use is limited due to its severe cardiotoxicity, which often results in high mortality rates. Sheng-Mai-Yin (SMY), a Traditional Chinese medicine (TCM) prescription, has been reported to exert a cardioprotective effect in various cardiovascular diseases, including DOX-induced cardiotoxicity (DIC). This study aimed to provide novel insights into the underlying cardioprotective mechanism of SMY. SMY, composed of Codonopsis pilosula (Franch.), Ophiopogon japonicus (Thunb.), and Schisandra chinensis (Turcz.) at a ratio of 3:2:1, was intragastrically administered to male C57BL/6 mice for five days prior to the intraperitoneal injection of mitoTEMPO. One day later, DOX was intraperitoneally injected. Hematoxylin-eosin staining and Sirius red staining were carried out to estimate the pharmacological effect of SMY on cardiotoxicity. Mitochondrial function and ferroptosis biomarkers were also examined. AAV was utilized to overexpress Hmox1 to confirm whether Hmox1-mediated ferroptosis is associated with the cardioprotective effect of SMY on DOX-induced cardiotoxicity. The findings revealed that SMY therapy reduced the number of damaged cardiomyocytes. SMY therapy also reversed the inductions of cardiac MDA, serum MDA, LDH, and CK-MB contents, which dramatically decreased nonheme iron levels. In the meantime, SMY corrected the changes to ferroptosis indices brought on by DOX stimulation. Additionally, Hmox1 overexpression prevented SMY's ability to reverse cardiotoxicity. Our results showed that SMY effectively restrained lipid oxidation, reduced iron overload, and inhibited DOX-induced ferroptosis and cardiotoxicity, possibly via the mediation of Hmox1.
PMID:37770231 | DOI:10.18632/aging.205062
07:06
PubMed articles on: Cardio-Oncology
Early Echocardiography and ECG Changes Following Radiotherapy in Patients with Stage II-III HER2-Positive Breast Cancer Treated with Anthracycline-Based Chemotherapy with or without Trastuzumab-Based Therapy
Med Sci Monit. 2023 Sep 20;29:e941754. doi: 10.12659/MSM.941754.
ABSTRACT
BACKGROUND Cardiotoxicity from radiotherapy and anti-cancer therapies have been reported in patients with breast cancer. This study aimed to investigate the early echocardiography and ECG changes following radiotherapy in 68 patients ages 30-78 years with stages II-III HER2-positive breast cancer treated with anthracycline-based chemotherapy with or without trastuzumab-based therapy from 2015 to 2021. MATERIAL AND METHODS We analyzed data of 68 breast cancer patients aged 30-78 years, predominantly in AJCC stages II-III (61) and HER2-positive (58), treated and monitored from 2015 to 2021. Cardiac function was assessed using echo- and electrocardiography. We employed univariate logistic models to gauge associations between pre-existing cardiac conditions, treatment modalities, and changes in cardiac function. RESULTS A decrease in the left ventricle ejection fraction (EF) by >5% was associated with heart doses >49.3 Gy and with maximum and average doses to the left anterior descending artery (LAD) exceeding 46.9 Gy and 32.7 Gy, respectively. An EF drop of ≥10% was correlated with anti-HER2 therapy, pre-existing ECG changes, and the onset of conditions in the left ventricle, major vessels, and valves. Conditions were exacerbated in patients with prior echocardiographic abnormalities, while some emerged concurrent with the EF decline. CONCLUSIONS This research emphasizes the importance of personalized heart monitoring and care for breast cancer patients undergoing multimodal therapies. Significant and potentially irreversible EF declines can result from radiation and anti-HER2 treatments.
PMID:37772333 | PMC:PMC10521333 | DOI:10.12659/MSM.941754
07:06
PubMed articles on: Cardio-Oncology
Reverse cardio-oncology: A budding concept
Indian Heart J. 2023 Sep 27:S0019-4832(23)00163-3. doi: 10.1016/j.ihj.2023.09.004. Online ahead of print.
No comments:
Post a Comment
اكتب تعليق حول الموضوع